Система питания двигателя МАЗ воздухом





В дизелях, как и в карбюраторных двигателях, литровая мощность при заданном составе горючей смеси зависит от количества воздуха, поступающего в цилиндры. Расчетные и экспериментальные данные показывают, что чем больше воздуха поступает в цилиндры двигателя даже при работе на малых и средних нагрузках, тем выше его экономи­ческие показатели.

У двигателей без наддува количество поступающего в цилиндры воздуха зависит от сопротивления, возникающего при движении воз­духа по впускному тракту, подогрева нагретых деталей двигателя при впуске, а также качества очистки цилиндров от отработавших газов.
При наддуве количество воздуха определяется подачей нагнетате­ля; но и в этом случае наполнение цилиндров свежим зарядом возду­ха зависит от указанных причин.

На двигателях ЯМЗ-2Э8ПМ и ЯМЗ-2Э8ФМ в качестве нагнетателя установлен турбокомпрессор, использующий энергию отработавших газов для наддува двигателя. Увеличивая массу воздуха, поступаю­щего в цилиндры, турбокомпрессор обеспечивает более эффектив­ное сгорание повышенной дозы топлива, что обусловливает повышение мощности двигателя при умеренной тепловой напряженности.

Обеспечение надлежащей фильтрации воздуха и герметизация впуск­ного тракта двигателя имеют большое значение. Это объясняется тем, что при недостаточной фильтрации или герметичности впускного трак­та в цилиндры двигателя при впуске с воздухом поступают мелкие абразивные частицы, которые при попадании на трущиеся поверхности деталей вызывают их быстрый износ, что сокращает срок службы дви­гателя, снижает его экономичность и мощность.

Система питания двигателя воздухом

Рис. 22. Система питания двигателя воздухом: 1 — воздушный фильтр; 2 — воздухозаборная труба; 3 — датчик сигнализатора засоренности; 4 — соединительная труба; 5 — впускной клапан; 6 — воздушный канал головки блока; 7 — впускной трубопровод; 8 — выпускной трубопровод; 9 — колесо компрессора; 10 — турбокомпрессор; 11 — колесо турбины; 12 — выпускной клапан; 13 — глушитель

Схема питания двигателя воздухом показана на рис. 1. Воздух через воздухозаборную трубу 2 попадает в воздушный фильтр 1. Очищен­ный воздух поступает в турбокомпрессор, который нагнетает воздух через впускные трубопроводы в воздушные каналы головок блока, распределяющие воздух по цилиндрам.

Воздушный фильтр (рис. 23) двухступенчатый, с инерционной решеткой и сменным фильтрующим элементом, выполненным из картона. Для обеспечения герметичности корпуса между крышкой 7 корпусом 1 расположено уплотнительное кольцо 5. Крышка крен ся к корпусу посредством четырех стяжек 4.
Фильтрующий элемент состоит из наружного и внутреннего жухов, выполненных из перфорированной стальной ленты, и фильтрующего элемента.

Воздух через колпак трубы воздухозаборника попадает для предварительной очистки в первую ступень. В результате резкого изменения направления воздуха в инерционной решетке крупные частицы пыли осаждаются на корпусе фильтра.

Воздушный фильтр

Рис. 23. Воздушный фильтр: 1 — корпус; 2 — фильтрующий элемент; 3 — входной патрубок; 4 — стяжка; 5 — уплотнительное кольцо; 6 — гайка; 7 — крышка; 8 — прокладка; 9 — основание; 10 — гайка-барашек; 11 — уплотнительное кольцо; 12 — шайба; 13 — держатель фильтрующего элемента; 14 — выходной патрубок

Очищенный предварительно в первой ступени воздух поступает во вторую ступень (фильтруюпрш элемент) для более тонкой очистки. Очищенный воздух через патрубок 14 и соединительные трубы поступает в компрессор, а затем в цилиндры.

На соединительной трубе установлен датчик 3 (см. рис. 24) сигнализатора засоренности. При засорении воздушного фильтра и возрастании разрежения в соединительной трубе датчик срабатывает, сигнализируя о необходимости промывки или замены сменного фильтрующего элемента.

Турбокомпрессор (рис. 24) состоит из одноступенчатого центробежного компрессора и радиальной центростремительной турбины. Основными узлами турбокомпрессора являются корпус 6 подшипников, ротор 7, корпус 17 компрессора и корпус 1 турбины. Колесо 3 турбины и колесо 16 компрессора расположены на противоположных концах вала ротора.

Турбокомпрессор

Рис. 24. Турбокомпрессор: 1 — корпус турбины; 2 — сопловой венец; 3 — колесо турбины; 4 — уплотнительное кольцо турбины; 5 — проставка корпуса турбины; 6 — корпус подшипников; 7 — вал ротора; 8 — упорная втулка; 9 — упорный фланец; 10 — крышка корпуса подшипников; 11 — уплотнительное кольцо ротора; 12 — маслоотражатель; 13 — прокладка патрубка; 14 — гайка колеса компрессора; 15 — впускной патрубок; 16 — колесо компрессора; 17 — корпус компрессора; 18 — диффузор; 19 — крышка корпуса компрессора; 20 и 21 — уплотнительные кольца; 22 — упорное кольцо; 23 — втулка; 24 — шайба.

Рабочее колесо центробежного компрессора полуоткрытого типа, с радиальными лопатками. Колесо выполнено из алюминиевого сплава; оно напрессовано на вал и закреплено гайкой. Компрессор имеет безлопаточный диффузор, установленный на корпусе компрессора. Выпускные патрубки компрессора соединены со впускными трубопроводами двигателя.

Рабочее колесо турбины полуоткрытого типа, с радиальными лопатками, изготовлено методом литья по выплавляемым моделям из жаропрочного сплава. Корпус турбины изготовлен из жаропрочного чугуна. Газ подводится к сопловому венцу 2, изготовленному из жаростойкой стали, двумя суживающимися каналами. На торце корпуса турбины имеются шпильки для крепления выпускного трубопровода.

В турбокомпрессоре применены плавающие подшипники скольжения, смазываемые под давлением. Подшипники выполнены из бронзы; они свободно установлены в расточках чугунного корпуса 6 под-шипников и удерживаются от осевых перемещений стопорными пружинными кольцами. На каждом конце вала имеются уплотнительные разрезанные кольца, изготовленные из специального чугуна. Ротор турбокомпрессора удерживается от осевого перемещения упорной втулкой 8, расположенной со стороны компрессора.

Колесо турбины вращается с частотой, превышающей 40000 об/мин. Сидящее на одном валу колесо компрессора засасывает очищенный воздух и направляет его в цилиндры двигателя. Давление масла в смазочной системе подшипников турбокомпрессора не должно быть ниже давления в смазочной системе двигателя более чем на 100 кПа при частоте вращения 2100 об/мин и на 50 кПа при минимальной частоте вращения в режиме холостого хода.

При работе в режиме полной нагрузки при частоте вращения коленчатого вала, равной — 2100 об/мин, избыточное давление наддува должно составлять 60 — 80 кПа. При снижении нагрузки или уменьшении частоты вращения давление наддува понижается плавно.





Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *